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Résumé

Ce stage a été réalisé au sein du Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (LAMFA),
situé a I'’Université de Picardie Jules Verne. L’objectif principal du stage était I’estimation d’erreur et 1’opti-
misation de méthodes utilisées en calcul de structure électronique pour la physique de la matiére condensée.
Les modeles dans ce domaine de recherche reposent sur I’équation de Schrédinger & N corps, une EDP linéaire
de grande dimension (3N, ot N est le nombre d’électrons du systéme). Sa résolution pratique n’est possible
que pour de petites valeurs de N a cause du fléau de la dimension. Différents modeéles d’approximation ont
donc été introduits, comme la théorie de la fonctionnelle de densité de Kohn—Sham (DFT), au prix d’une non-
linéarisation du probléme initial. De nombreuses méthodes ont été développées pour résoudre numériquement
les équations sous-jacentes, qui prennent souvent la forme d’un probléme aux valeurs propres non linéaire, résolu
par exemple par des méthodes de type point fixe.

La premiere partie de ce stage a consisté a optimiser des méthodes numériques pour la résolution de 1’équa-
tion de Schrodinger en utilisant le modele de Gross-Pitaevskii (section 3), tandis que la deuxiéme partie s’est
concentrée sur 'estimation de I'erreur en utilisant une discrétisation en ondes planes, basée sur une linéarisation
des équations.

Outils

Pour répondre a la problématique de ce stage, nous avons utilisé les outils informatiques suivants :

Le langage Julia : Un langage de programmation de haut niveau, performant et dynamique, congu pour le
calcul scientifique et les applications de calcul numérique. Julia se distingue par sa capacité a combiner la
facilité d’utilisation des langages dynamiques avec les performances des langages compilés, en particulier
pour le calcul intensif.

DFTK (Density Functional Tool Kit) : Un ensemble d’outils développé en Julia pour les calculs basés
sur la théorie de la fonctionnelle de la densité (DFT). Congu pour simplifier le développement de nouvelles
méthodes, DFTK permet d’explorer une large gamme de modeles, allant des systémes simples en 1D a
des systeémes physiques complexes comportant jusqu’a 1 000 électrons. Cette flexibilité fait de DFTK un
outil puissant a l'intersection de ’analyse numérique, du calcul haute performance et des simulations de
matériaux. Il offre des fonctions prédéfinies pour le calcul de la densité électronique et de ’énergie des
atomes, et prend en charge des simulations pour des systémes périodiques.

high-
performance
computing

materials
simulations

novel
scientific
models

numerical
analysis

FIGURE 1 — DFTK Toolkit

Cluster informatique : Gréace a la plateforme MatriCS, j’ai pu exécuter des calculs lourds a distance,
bénéficiant ainsi de ressources de calcul importantes et d'une grande capacité de mémoire, essentielles
pour traiter les simulations complexes et les calculs intensifs.
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1 Introduction

L’équation de Schrodinger, formulée par Erwin Schrédinger en 1925, est une pierre angulaire de la méca-
nique quantique, décrivant 1’évolution temporelle des systémes quantiques tels que les atomes et les molécules.
Cette équation nous permet de déterminer la fonction d’onde d’un systéme, qui contient toutes les informations
sur I’état quantique des électrons. On peut ensuite déterminer de nombreuses propriétés physiques du systéme
considéré. L’énergie, dans ce contexte, joue un role crucial : elle apparait sous forme de valeurs propres quan-
tifiées, c’est-a-dire que ’énergie d’un systéme ne peut prendre que des valeurs discreétes spécifiques. L’équation
de Schrédinger dépendante du temps, décrivant le comportement d’un électron soumis & un potentiel externe
V, s’écrit :

o(x,t)  R?

th = —%Aw(x,t) + V(x)Y(z,t) (1)

— (z,t) est la fonction d’onde, qui dépend de la position x et du temps .

— i est I'unité imaginaire telle que i2=-1.

— h est la constante de Planck réduite.

— m est la masse de ’électron

— A est U'opérateur laplacien, qui donne la dérivée seconde par rapport a la position, représentant 1’énergie

cinétique de I’électron.

— V(x) est le potentiel externe, qui dépend uniquement de la position z.

En utilisant les unités atomiques, ot I’on suppose que la constante de Planck réduite /4 et la masse m valent
1, ’équation de Schrodinger se réduit a :

OP(z,t) 1 _.
i— = 5 A 1) + V(@) (a, 1) = (Hov) (. 1) @

L’équation de Schrodinger dépendante du temps peut étre simplifiée dans le cas stationnaire, ou la fonction
d’onde 9 (z,t) ne dépend explicitement du temps qu’a travers un facteur de phase. Dans ce cas, on peut séparer
la fonction d’onde en un produit de la forme ¢ (x,t) = ¢(z)e *Et, ot E représente 1’énergie de I'état quantique
dans lequel de trouve I’électron. En substituant cette forme dans I’équation de Schrodinger dépendante du
temps, on obtient I’équation de Schrédinger indépendante du temps :

Hog(z) = E¢(x) (3)

o Hy = —2A + V(z) est Uopérateur hamiltonien représentant I'énergie totale du systéme. Cette équation
constitue un probléme aux valeurs propres, ou les valeurs propres F représentent les niveaux d’énergie possibles,
et |¢(x)|? représente la probabilité de localiser une particule dans une région donnée de I’espace. Résoudre
cette équation, surtout pour des systémes complexes, pose des défis numériques significatifs qui nécessitent des
méthodes numériques avancées. Pour résoudre ce probléme, nous verrons qu ’on peut utiliser une méthode de
minimisation de 1’énergie sur la variété de Grassmann. La variété de Grassmann Gr(k,n) est un espace qui
parametre les sous-espaces vectoriels de dimension k& d’un espace vectoriel de dimension n. Dans le contexte
des systémes quantiques & 1 corps, cela revient & minimiser 1’énergie E[¢] = % Cette approche est aussi
particulierement utile pour les systemes a plusieurs corps, ou la minimisation sur la variété de Grassmann
permet d’obtenir les états d’énergie minimale via des méthodes numériques efficaces.

1.1 Meécanique quantique des électrons non-interagissants

Considérons un systeme de N électrons non-interagissants. Dans ce cadre, deux principes fondamentaux
s’appliquent :

1. Le principe d’exclusion de Pauli : Ce principe stipule que deux électrons ne peuvent pas se trouver
dans le méme état quantique. Cela signifie que pour des systémes sans spin, chaque état quantique est
occupé par au maximum un électron.

2. Le principe Aufbau (ou principe de construction en allemand) : Les électrons occupent les états
d’énergie les plus bas disponibles, remplissant progressivement les niveaux d’énergie de plus en plus
élevés jusqu’a ce que tous les N, électrons soient placés.

L’équation de Schrodinger pour N; électrons non-interagissants dans ce systéme est donnée par :

Hopn = €non (4)

ou :
— Hy = f%A + V est I'hamiltonien de base du systéme, comprenant le terme cinétique -
laplacien) et le potentiel V.

1A (opérateur
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— €, est I'énergie associée a 'état ¢,,.

— Les fonctions d’onde ¢,, sont orthonormales, ¢’est-a-dire que {(pn, ©m) L2(R3) = Onm, OU O est le symbole
de Kronecker.

Les niveaux d’énergie sont ordonnés de maniére croissante :(principe Aufbau)

€< e << en,

L’énergie de 'état fondamental du systeéme, c’est-a-dire ’énergie la plus basse possible lorsque tous les
électrons sont dans les états d’énergie les plus bas, est donnée par la somme des N, plus basses énergies :

Ner
E= Z €n
n=1
La densité électronique de I’état fondamental, p(x), est exprimée comme :
Ney

pla) = lon(x)?

Cette densité est normalisée de sorte que 'intégrale sur tout 1’espace soit égale au nombre total d’électrons :

/ p(x)dx = Ng
R3

Pour résoudre numériquement ce probléme, on commence par choisir une base orthonormale discrétisée de
taille Np. Les orbitales discrétes (¢,) € RYe*Nel ne sont pas uniques en raison des dégénérescences possibles.
(plusieurs états d’énergie identique, lorsque la valeur propre est dégenerée). Par conséquent, il est plus aisé de
travailler avec le projecteur orthogonal P* sur l’espace engendré par la famille orthonormale (¢5,)1<n<n,, :

Nel Nel
P* =" lon)(onl = Y enpp € RN,
n=1 n=1

P* est un projecteur orthogonal de rang N, (matrice densité de 1’état fondamental). L’énergie de I’état
fondamental peut alors étre calculée comme :

Ne1 Nel
b= Z €n = Z<‘Pn|H090n> = Tr(HoP") (5)
n=1 n=1

Il est facile de montrer que le projecteur P* minimise la trace Tr(HpP) sur ’ensemble des projecteurs
orthogonaux de rang N, (cf. annexe). Ce probléme de minimisation peut étre reformulé de maniére équivalente
comme suit :

P*= min Tr(HoP)
PeMNel

ou My, est 'ensemble des projecteurs orthogonaux de rang Nej, défini par :

My, = {P e RN | p=pPT Tr(P)= Ng, P’ =P}

Cet ensemble est difféomorphe & la variété de Grassmann Grass(Nej, Np), qui paramétre les sous-espaces
vectoriels de dimension N, dans un espace de dimension N.
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((a)) Représentation des sept premiers ni- ((b)) Représentation des sept premiers ni-
veaux d’énergie et des fonctions d’onde as- veaux d’énergie et des densités de proba-
sociées bilité de présence associées

FIGURE 2 — Illustrations des niveaux d’énergie et des fonctions d’onde dans le cadre de la théorie quantique [4]
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La figure 2(a) montre les sept premiers niveaux d’énergie et les fonctions d’onde associées d’un oscillateur
harmonique quantique unidimensionnel (V' (z) = —32?). La figure 2(b) montre la méme chose mais cette fois-ci,
ce sont les allures des densités de probabilité de présence |p(z)|? qui sont représentées.

1.2 Meécanique quantique des électrons interagissants

Dans la réalité, les électrons interagissent entre eux, ce qui modifie la forme générale de I’énergie en ajoutant
un terme non linéaire, '’expression de ’énergie totale devient alors :

E(P) :=Tr(HoP) + En(P) (6)

Le choix de Ey,(P) modélise interaction entre les électrons et dépend du modele choisi pour approximer 1’équa-
tion de Schrodinger & N corps (comme la DFT de Kohn-Sham ou le modéle de Hartree-Fock). Au niveau continu,
on obtient les équations de Kohn-Sham en écrivant les conditions d’Euler-Lagrange associées au probléme (6).
L’hamiltonien se décompose en termes linéaires et non linéaires :

(_%A + VHUC) ©n + Vch(P)SOn = €nPn,

<50n7 Som>L2(]R3) = 6nma (7)
Ne

p= Zn:ll |90n|2

ol Viixc(p) est le potentiel de Hartree-échange-correlation, qui dépend de la densité électronique p. Au niveau
discret, le probléeme de minimisation associé est alors :

ngl‘ifl}vel E(P) = Tr(HoP) + En(P) (8)

2 Meéthodes numériques

Notre objectif est de minimiser la fonction d’énergie E(P) = Tr(HoP) + Eni(P) sous la contrainte que la
matrice P appartienne a I’ensemble My, (R) des projecteurs orthogonaux symétriques de rang N¢;. My, (R)
est une variété riemannienne réguliere : I'espace tangent Tp M y_, en un point P € My, est défini par :

TpMpy, ={X€eH|PX+XP=X, Tr(X)=0} ={X e H|PXP=0et (1-P)X(1—-P)=0}. (9)

Pour toute matrice X, 'opérateur de projection sur Tp.My,, est défini par :

Ip(X)=PX(I—-P)+ (I —-P)XP. (10)

La condition d’optimalité du premier ordre stipule que la projection du gradient de 1’énergie H* := VE(P,)
appliqué & la solution du probléme Py, sur 'ensemble My, (R) soit nulle, c’est-a-dire que IIp, (H,) = 0. Cela
implique que P, H,(1—P,) = 0et (1— P.)H, P, = 0, caractérisant ainsi P, comme un point critique de ’énergie
sur la variété.

Pour résoudre ce probleme de minimisation, nous commencerons par deux algorithmes de base : I'algorithme
de point fixe (SCF) et l'algorithme de descente de gradient. Ensuite, nous améliorerons ces deux algorithmes
en introduisant des parametres de relaxation pour accélérer la convergence. Afin de garantir que notre solution
reste dans ’ensemble M y_, (R) & chaque itération, nous utiliserons une fonction de rétraction R, définie pour une
matrice symétrique P proche de My, (R). Cette rétraction s’appuie sur la décomposition en valeurs propres
P.=VD/JV* ou D;; =1si D, > 0.5, et 0 sinon. Ainsi, la rétraction R(P.) est donnée par R(P.) = VDV*.

2.1 Point fixe

L’algorithme SCF (Self-Counsistent Field), également connu sous le nom de méthode du point fixe, est une
technique fondamentale en chimie quantique et en physique des matériaux pour résoudre les équations de
Schrédinger dans les systémes électroniques complexes. Ce processus itératif commence par une estimation
initiale Py de la matrice de densité, puis met a jour cette matrice a chaque étape k selon la relation suivante :

H(Pk)(bf :Ei‘c ;‘67 Elf SEIQC < ge?\/eﬂ
< f, ¢;€> = 5ija (11)
Pyey1 = R(Py + pllp, (2 (Px) — Pr))

ol R est la fonction de rétraction, § est un parametre de relaxation, et ®(Py) := Zf\g ok ((bf)*, avec ¢F
représentant les vecteurs propres orthonormés associés aux Ng; plus petites valeurs propres du gradient de
Pénergie H(Py). Le processus continue jusqu’a convergence, c¢’est-a-dire jusqu’a ce que la différence entre Py et
P41 soit suffisamment petite, indiquant que le champ est auto-cohérent.
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2.2 La descente de gradient

La descente de gradient est une approche itérative qui exploite le gradient de ’énergie pour minimiser une
fonction en mettant a jour les matrices densités Py a chaque itération selon :

Piy1 = R(Py — Bllp, (VE(Py))),

ou f est un pas fixe de relaxation, Il p, est 'opérateur de projection sur ’espace tangent, et R est la fonction
de rétraction

Tpr My

» ~VE(P¥) o
N

d(PF)

((a)) Algorithme de la descente de gradient ((b)) Algorithme du point fixe

FIGURE 3 — Comparaison des algorithmes de descente de gradient et de point fixe [1]

2.3 Convergence du deux algorithmes

Les taux de convergence des algorithmes de descente de gradient et de SCF dépendent du rayon spectral
d’opérateurs agissant sur 'espace RN?*N0 Pour ces algorithmes, ces opérateurs sont de la forme 1 — £J, ot 3
est le pas de relaxation fixe, et J la jacobienne (cf. Théoréme 1.1 et Théoréme 1.2 en annexe).

Pour la descente de gradient, 'opérateur est définit par J = ), + K,, et pour I'algorithme SCF, J = 1+ Q' K,,
ou Q, et K, sont des opérateurs définis comme suit. L’opérateur Q, : Tp, My — Tp, My est défini par :

Q.X =P, X(1-P)H, — H.P,X(1 — P,) + sym

olt "sym" représente la transposée de l’expression précédente. L'opérateur K(P) = IIpV2E(P)p est la
Hessienne projetée sur 'espace tangent en P, et K, = K(P,) ou P, est la solution de notre probléeme de
minimisation. La condition du second ordre pour une fonction d’énergie E(P), ou P est une matrice de densité
dans I'espace My, s’exprime comme suit,sous des hypothéses raisonnables pour E :

VX 67-1:'*'/\/[]\%17 <X7 (Q*+K*)X>F 277”X||%a

ot K, = Ilp, V2E(P,)lp, est 'Hessienne de I'énergie projetée sur espace tangent Tp, My, au point critique
P,. Ici, IIp, est 'opérateur de projection sur cet espace tangent, et n est une constante positive. Cette condition
garantit que la fonction d’énergie est localement convexe autour de P, dans l’espace tangent, ce qui assure que
P, est un minimum local et que les variations dans la direction de ’espace tangent ne conduisent pas a des
diminutions d’énergie imprévues, assurant ainsi la stabilité et la convergence ds algorithmes.

3 L’équation de Gross—Pitaevskii

Dans cette section, nous abordons I’équation de Gross—Pitaevskii, un modéle non linéaire couramment utilisé
en physique de la matiere condensée. Au niveau continu, la fonction d’énergie est donnée par :

1 1 1
Ealy) =Trpe,, (—QA’Y) +/0 Vpydx + %/0 P da,

ou p, représente la densité associée a 'opérateur vy, et V est le potentiel externe.
Pour obtenir une approximation numérique, nous discrétisons cette équation en utilisant la méthode des
différences finies sur une grille uniforme de pas § = N% Cela conduit a un modele de dimension finie :

a (P2
Ea(P):Tr(HOP)—kQ(S;((S) .

La matrice Hy = f%A +V € RYoXNo est une matrice tridiagonale qui incorpore les conditions aux limites
périodiques :
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. 1 . 1
V1<i< Ny, hy= st V(i6), hiit1=hii—1 = 552
Pour implémenter les conditions aux limites périodiques, nous identifions les sites 0 et IV, ainsi que Ny + 1
et 1. Avec cette discrétisation, la densité discréte est approximée par p(id) ~ p; := Pg’?, de sorte que :

1 Ny
/pdxzz&pi:l.
0 i=1

Le potentiel V(z) est défini par :

V(z) = —C (exp (—ccos®(m(z — 0.20))) + 2 exp (—ccos®(r(z + 0.25))) ),

avec ¢ = 30 et C' = 20. Ce potentiel a double puits devrait localiser la densité p principalement dans les
régions correspondantes aux puits. Pour résoudre ce probleme de minimisation avec contraintes, nous utiliserons
des méthodes itératives telles que la descente de gradient a pas fixe et la méthode du point fixe décrite dans
la section précédente. Nous chercherons également a optimiser ces méthodes en employant un parameétre de
relaxation variable afin d’accélérer la convergence.

3.1 Descente de gradient a pas fixe

La descente de gradient définie dans la section 2.1 met a jour Py de maniere itérative avec :
Pyi1 = R(Py — fllp, (VE(Py)),

ou (3 est le pas de descente fixe et VE,(Py) est le gradient de E, évalué en Py et R est la fonction de
rétraction.

Pour bien converger vers la solution exacte il faut initialiser avec une matrice proche de la solution exacte.
Pour cela on initialise avec Py qui est égal & ¢1¢7, ot ¢ est le vecteur propre de la matrice hermitienne h
associé & sa plus petite valeur propre. On choisit un 3 treés petit, de Iordre de 107°.

Convergence atteinte aprés 2724 itérations.

Convergence de l'algorithme Gradient descent

gradient descent

Courbe de la densité

E -
- ™\
\
/ N\
/ \ 4-30
/ \
0 500 1000 1500 2000 2500 L L —>1 -40
Nombre d'itérations 050 0.75 1.00
((a)) Convergence du gradient descent ((b)) variation de la densité en fonction de x

F1GURE 4 — Convergence de ’algorithme de descente de gradient pour a = 50 et N, = 100

L’erreur dans la k-éme itération est définie par ||Pyy1 — Pillr, ot || || désigne la norme de Frobenius.

L’algorithme s’arréte lorsque 'erreur atteint une tolérance de 10710 apreés 2724 itérations pour un 3 de 5.1075.
La figure 4 représente la densité définie par p(z) = Pd(:f), ou P désigne notre solution qui minimise la fonction

d’énergie trouvée en utilisant la descente de gradient avec P(x) = P(i - dx) = P;;.

3.2 Descente de gradient a pas variable

On peut calculer un pas § variable pour accélerer la convergence de la descente de gradient en calculant
Tr(HOPlfH) + 35 Zivzbl(PkH)?)i . Etant donné que Pyy1 est une matrice densité, en utilisant 1’expression de
Pyt en fonction de Py et de B, on peut exprimer §j sous forme quadratique et trouver par dérivation le By
qui minimise la fonction d’énérgie. (cf. annexe)

On trouve :

5, — TOPILp (VE(P)) + 55 SN (Pa)ii(Tp, (VE(Py)))si
Tr(h(Tlp, (VE(P,)))?) + 55 Xt (e (VE(Py)))2,
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Cette méthode converge rapidement par rapport a la descente de gradient a pas fixe.
On peut obtenir une meilleure convergence en multipliant Sj a chaque itération par un facteur aléatoire issu
d’une loi uniforme sur Uintervalle [0, 2] (cf. figure 19).

La multiplication par un facteur de probabilité issu de la loi uniforme permet de réduire le nombre d’itérations
de plus de 1000 & moins de 400. Cette approche fonctionne bien lorsqu’elle est appliquée a la direction de la
descente et lorsque 'erreur décroit de maniere linéaire.

3.3 Descente de gradient a pas variabe 2

On peut également chercher un paramétre 3 variable qui annule (r* J(r**1)) ou J = Q + K désigne la
jacobienne appliquée au résidu r75*+1, défini par Ilp, 1 (VE(Py41)). En utilisant la méthode de gradient, on

obtient la mise a jour suivante :
Pyy1 = R(Py — fllp (VE(Px)))

En appliquant une projection sur P,y1 avec une approximation de premier ordre, le 8 optimal se calcule sous
la forme :

(r*, 1)

(Jrk, Jrk)

ﬂopt =

—— B=5e-5

—— B variable 1

—— B variable 1 avec loi uniforme
B variable 2
—— B variable 2 avec loi uniforme

Erreur

1072 |

. . . . . .
0 500 1000 1500 2000 2500
iterations

F1GURE 5 — Convergence de 'algorithme avec différentes 8 variables pour o« = 50 et N, = 100

3.4 Algorithme du point fixe (SCF)

L’algorithme de point fixe défini dans la section 2.1 s’écrit comme suit :

Pyy1 = R(Py + pllp, (® (Pr) — Pr))

Convergence de l'algorithme SCF Courbe de la densité avec SCF
N
1.2
-
5 S
£ X / -
w o / \ /N
/ /0
1.0 \ /
/ \ / \
/ \\ 4 \
~ \
0L, I I I I oo T’/ ] ] ] ~
0 25 50 75 100 0.00 0.25 0.50 0.75 1.00
Nombre d'itérations X
((a)) Convergence de SCF ((b)) variation de la densité

F1GURE 6 — Convergence de 'algorithme SCF pour o = 50 et N, = 100

Afin de choisir un g fixe optimal, nous langons la simulation pour des valeurs de 3 comprises entre 0.01
et 1.6 et des valeurs de oo de 2 a 50. Nous tracons ensuite une heatmap pour visualiser le nombre d’itérations
nécessaires pour atteindre une tolérance de 107'2. Nous fixons un nombre maximal d’itérations & 500. Pour
réduire le temps de calcul on utilise la bibliothéque Base . Threads de Julia pour effectuer les calculs en parallele
du nombre d’itérations associé a chaque paire (¢, ).
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d’iteration en fonction de a et 8 d’iteration en fonction de a et 8

FIGURE 7 — Heatmap de l'algorithme point fixe

Pour un a de 50 et un 5 de 0.25, la méthode du point fixe converge en moins de 250 itérations, ce qui est
considérablement rapide comparé a la méthode de descente de gradient. La figure 7 montre que le S optimal
diminue lorsque « augmente. Il faut toutefois garder en téte qu’il est nécessaire de diagonaliser une matrice a
chaque itération.

3.5 Point fixe avec relaxation

On peut calculer un pas variable pour la méthode du point fixe de la méme maniére que pour la descente de
gradient, en évaluant la fonction d’énergie en P,? 41 et en injectant Py par sa formule. En dérivant par rapport
a B (cf. annexe 5.2), on obtient :

T (hIp V(G(E(PL)) = Pi)Pe) + (55) Y Pelis i) e, V(@(E(Py)) — Pu)lis ]
Tr (b (p, V(S(E(PL) = P))*) + (55) S (e, V(S(E(P)) — Pilis i)

Method | Temps (s) | Iterations

1.1656
SCF_pas_variable 0.9649
SCF_pas_variable2 0.6827
SCF_pas_random | 0.6768 |

38
Convergence de ['algorithme SCF

Courbe de la densité avec SCF

N

beta=0.1

beta variable beta variable

beta double diagonalisation / \ beta double diagonalisation
beta random beta random

12 { \

beta=0.1

11

Erreur
P(x)/dx

09

1 L 1 L 1 L L L L .
0 25 50 75 100 0.00 0.25 0.50 0.75 1.00
Nombre d'itérations X

((a)) Convergence des algorithmes de point fixe ((b)) Courbe de la densité

F1GURE 8 — Convergence des algorithmes de point fixe

Les algorithmes de points fixes convergent rapidement en termes de nombre d’itérations et de temps de
calcul par rapport aux méthodes de descente de gradient. Pour le point fixe avec un parametre de relaxation
fixe, la méthode converge en moins de 120 itérations, ce qui est plus rapide que la la descente de gradient avec
(B variable. On remarque également que la multiplication du parametre de relaxation variable par un facteur
aléatoire uniforme entre [0, 2] réduit le temps de calcul et le nombre d’itérations par rapport a la méthode avec
uniquement le parametre de relaxation variable, mais n’accéléere pas la convergence de maniére significative
comme le fait la descente de gradient. De plus, la deuxiéme méthode pour calculer le parameétre de relaxation
variable, en utilisant une double diagonalisation (cf. annexe 5.2), accélére la convergence, bien que la courbe
de convergence n’évolue pas de manieére linéaire et oscille légerement. Le temps de calcul de cette méthode est
proche de celui utilisant un facteur de probabilité, bien qu’elle présente un nombre d’itérations plus faible. Cela
est dii au fait qu’a chaque itération, il faut diagonaliser deux fois. Pour des matrices de taille plus grande, cet
algorithme pourrait étre cofiteux en termes de temps de calcul.



3 L’EQUATION DE GROSS-PITAEVSKII 10

3.6 Calcul du beta fixe optimal
Le 8 optimal est défini par (cf. annexe 5.2) :

2

50pt - >\max + )\min

Ol Amax €t Amin désignent respectivement la valeur propre maximale et minimale de la jacobienne .J de

I’algorithme choisi.
Dans le cas général, les matrices associées a ces opérateurs peuvent atteindre des dimensions tres grandes. Par
exemple, pour notre probleme, la matrice densité P a une dimension de 100 x 100, tandis que la matrice associée
a la Jacobienne est de dimension 10000 x 10000. Le calcul direct des valeurs propres dans cet espace est souvent
impraticable en raison du coiit élevé des calculs.

Pour surmonter cette difficulté, nous utilisons la bibliothéque Linearmap en Julia, pour stocker non pas
des matrices elles-mémes, mais leur action sur des vecteurs, permettant ainsi de calculer leurs valeurs propres
extrémes a I’aide de méthodes itératives. Pour la Jacobienne dans la méthode SCF, nous employons la méthode
itérative gradient conjugué pour calculer I'action de Q~!. Nous nous intéressons particulierement aux valeurs
propres de la Jacobienne définie sur ’espace tangent, car les valeurs propres dans l'orthogonal de cet espace
sont toutes nulles.

Une premiére approche consistait a utiliser la bibliotheque ARPACK pour calculer la plus grande valeur propre
en utilisant la méthode itérative de puissance et la plus petite valeur propre en utilisant la méthode de puissance
inverse, puis faire une boucle pour trouver la premiere petite valeur propre non nulle. Cependant, cette méthode
est cotiteuse pour la Jacobienne de la méthode SCF car elle nécessite a chaque fois 'inversion de 'opérateur 2*.

Pour optimiser ce processus, nous pouvons d’abord calculer la base des vecteurs propres de 'opérateur Q*,
défini par :

Va € {27 3, Nb}’ Qr (¢1¢Zj + ¢a¢,{) = (Ea - 51) (¢1¢§ + (ba(b{) :

ou ¢, sont les vecteurs propres associés a chaque valeur propre, triés de la plus petite a la plus grande, de
VE(P*), avec P* étant la solution de notre probléme de minimisation.

La projection de la Jacobienne sur cette base réduite permet d’obtenir une version simplifiée de la Jacobienne,
de dimension 99 x 99, ce qui facilite considérablement le calcul des valeurs propres.

Apres avoir obtenu la Jacobienne projetée, nous utilisons des méthodes itératives fournies par la bibliotheque
ARPACK, pour calculer directement les plus grandes et les plus petites valeurs propres de la matrice. La projection
sur une base réduite diminue significativement la dimension du probléeme, rendant le calcul des valeurs propres
plus rapide et plus efficace.

Cette approche permet de déterminer le parametre de relaxation 5 optimal avec une précision accrue, tout
en optimisant le temps de calcul.

50

Variation du beta correspondant a I'itération minimale en fonction de I'alpha
Variation du beta_optimal en fonction de I'alpha

40

30

alpha

20

10

0.3 0.4 0.5 0.6 0.7 0.8
beta

FIGURE 9 — Comparaison du beta optimal

La figure 9 montre la variation du parametre 3 correspondant aux itérations minimales calculées en utilisant
le heatmap 7(b) ainsi que la variation du § optimal calculé a partir des valeurs propres du jacobien. On remarque
que les deux courbes ont des profils similaires et sont presque superposées, avec une erreur moyenne de 0,01.
Cette petite différence est due a la liste des 3 prises dans le heatmap. Cet écart indique que notre approche
pour calculer le 8 optimal est bien cohérente et correspond au nombre minimal d’itérations.
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3.7 Comparaison entre différents algorithmes

Convergence de I'algorithme gradient descent Convergence de I'algorithme SCF
ge:a_osptigna\ ——— beta=0.1
Bea?z_ilaie—-Borwein — beta=beta_optimal
gradient descent & pas varaiable —— beta variable
gradient descent random ——— beta variable2
— — assymptotic rate beta_optimal beta random
~— — assymptotic rate beta=5e-5 — -assymptotic rate beta_optimal

—— -assymptotic rate beta=0.1

Erreur
Erreur
"
S
&

10710

10710 b

0 500 1000 1500 0 25 50 75 100
itérations itérations

FIGURE 10 — Comparaison de la convergence des algorithmes de gradient descent et de point fixe pour N, = 100
et o = 50.

La méthode de descente de gradient avec un pas variable, inspirée de la méthode de Barzilai-Borwein (voir
annexe), converge rapidement et atteint une tolérance de 107!° en moins de 200 itérations. En parallele, la
méthode probabiliste, qui multiplie le 8 précédent par une loi normale entre [0, 2], converge avec des performances
distinctes. Le gradient & pas variable converge plus rapidement que celui a pas fixe, mais il demeure moins efficace
que la méthode de Barzilai-Borwein. Le (3 fixe optimal, obtenu en calculant les valeurs propres de la jacobienne,
permet de converger en 1430 itérations, comparé & un 3 fixe de 5 x 10~° qui nécessite plus de 2000 itérations
pour atteindre la convergence. Le calcul des valeurs propres de la jacobienne permet également de déterminer
le taux asymptotique défini par le rayon spectral de 1 — 3J, ou J est la jacobienne. On peut I'exprimer comme

r = max (|1 — BAmax|, |1 — BAmin]) -

On obtient alors le taux de convergence suivant :

3C € R tel que ||P, — Py_1|lr < CrF,

ot P est la solution & l'itération k et || - || désigne la norme de Frobenius. En tracant 7% en échelle
logarithmique, on peut observer une droite paralléle a la courbe de convergence pour chaque valeur fixe de 3.

Il est également observé que les algorithmes & point fixe tendent & étre plus efficaces que ceux basés sur la
descente de gradient, car ils permettent généralement de converger en moins d’itérations, chaque itération étant
cependant plus cotiteuse.

4 Convergence avec un facteur de relaxation aléatoire

Dans cette section, nous cherchons a comprendre pourquoi multiplier le parametre de relaxation par un
facteur aléatoire issu d’une loi uniforme accélere la convergence.

Pour mieux appréhender I'impact de la loi uniforme sur la convergence, nous étudions un cas linéaire simple
de minimisation de la fonction de coiit quadratique :

1
§<Ax,x> — (b, z).

Comme le gradient de la fonction de cofiit est V f(z) = Ax — b, avec A une matrice symétrique définie positive,
minimiser cette fonction revient a résoudre le systéme linéaire Az = b. Nous utilisons ’algorithme de descente
de gradient pour atteindre cette solution et cherchons a calculer un pas de relaxation optimal qui annule

(Ark k1) "ol le résidu r* est donné par :
rk =b— Az*.
On trouve alors un ; donné par :
(rk, Ark)
(Ark, Ark)’
Nous travaillons avec A, la matrice du laplacien, et comparons la convergence de la méthode avec ce pas variable
en le multipliant par un facteur tiré d’une loi uniforme.

B =
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FIGURE 11 — Comparaison entre la convergence sans et avec la loi uniforme entre [0.5,1.5]
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F1GURE 12 — Comparaison entre la distribution du facteur de relaxation sans et avec la loi uniforme

La multiplication par une loi uniforme permet d’accélérer la convergence. En effet, sur la figure 12(a),
nous remarquons que les facteurs ik oscillent entre deux valeurs. Cependant, apres avoir multiplié par une loi
uniforme, la distribution des facteurs s’approche des inverses des valeurs propres. Cette approche accélere la

convergence, en effet la mise a jour du résidu dans la méthode de gradient descent est donnée par :
i1 = (I — BeA)rk

nous exprimons 7 dans la base des vecteurs propres de A :

n

Tk = Z(ﬁz%‘)%‘

i=1

ou v; sont les vecteurs propres associés aux valeurs propres \; de A. En substituant cette expression dans la
mise a jour du résidu, nous obtenons :

n
rep1 = (rhvi) (1= Bei)vs
i=1
Cette expression montre comment chaque composante du résidu est ajustée en fonction des valeurs propres

de A et du pas de mise & jour §i. En choisissant 85 comme l'inverse des valeurs propres \; pour i = 1,...,n,
nous annulons le résidu dans la direction des vecteurs propres. Ainsi, a l'itération k=n, r;=0.
Cela signifie que, pour une matrice de taille 10, la méthode va converger en 10 itérations si By = i, comime
le montre la figure 20. Toutefois, cela nécessite de connaitre les valeurs propres de A. En multipliant le pas de
mise a jour [ par une loi uniforme, nous augmentons nos chances de nous approcher des inverses des valeurs
propres, ce qui contribue a accélérer la convergence.
On utilise maintenant la descente de gradient a pas variable, ou le parametre de relaxation est multiplié par
un facteur tiré d’une loi uniforme entre [1 — o, 1 + o]. Nous faisons varier o entre [0, 1] et comparons le
nombre moyen minimal d’itérations nécessaires pour atteindre la convergence avec celui obtenu par la méthode
de descente de gradient a pas fixe. Cette comparaison est effectuée sur 1000 simulations pour chaque valeur de
.
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FIGURE 13 — Variation de I’écart en fonction de o

Le o optimal trouvé est autour de 0.4, c’est-a-dire que multiplier le parametre de relaxation par un facteur
tiré d’une loi uniforme entre [0.4, 1.4] permet d’obtenir en moyenne le nombre minimal d’itérations.
On observe un comportement similaire si on travaille avec ’équation de Gross-Pitaevskii (cf. figure 21 en annexe).

En effet, cela revient au fait que nous avons pris une matrice A correspondant & la matrice laplacienne utilisée
pour construire le hamiltonien dans le cas de Gross-Pitaevskii. Le laplacien est perturbé par un potentiel V,
ce qui change le o optimal. Cependant, lorsque nous utilisons d’autres matrices mal conditionnées importées
depuis Matrix Market, cela modifie significativement le o optimal, car il dépend de la distribution des valeurs
propres. Dans les deux cas, multiplier par un facteur aléatoire de moyenne 1 permet d’accélérer la convergence,
méme dans le cas ou la matrice est mal conditionnée, ou la méthode de gradient descent, méme avec un pas
optimal variable, converge lentement.
En remplacant la loi aléatoire par une loi normale de moyenne 1 et de variance %, nous avons observé que
le profil des résidus demeure similaire a celui obtenu avec la loi initiale. Cette invariance suggere que, malgré
le changement de distribution, les caractéristiques fondamentales de la convergence restent intactes. De plus,
nous continuons & obtenir le méme o optimal (cf. figure 22 en annexe). Cependant, il est important de noter
que la variance de la loi normale et ’écart type influencent directement le comportement de la convergence.
Une variance plus élevée peut entrainer une plus grande dispersion des valeurs générées, ce qui peut affecter la
précision de I'approximation et la rapidité de la convergence.
On essaie maintenant de construire une fonction de répartition qui suit une distribution normale centrée sur
I'inverse des valeurs propres, avec un écart-type égal & min( /\% - %D Ensuite, nous générons des S qui suivent
cette loi et nous utilisons ces 3 pour calculer la solution de notre probléme. Nous remarquons que cette méthode
donne des résultats différents par rapport a la loi utilisée précédemment. Parfois, cela permet de converger
treés rapidement, comme le montre la figure 23 en annexe, et parfois 'inverse, comme illustré également par la
figure 24 en annexe.

Cela peut s’expliquer par le fait que, pour assurer la convergence et la diminution du résidu apres chaque
itération, il faut que f < )\2 En revanche, en générant des [ avec notre fonction, nous pouvons tomber

plusieurs fois sur des points supérieurs & y=— 2_ on remarque la méme chose dans la figure 20 ol nous prenons 3
max
qui vaut 'inverse des valeurs propres.

5 Estimations d’erreurs pour la DFT de Kohn-Sham en Ondes Planes

La résolution de probléemes de minimisation dans l’espace réel, notamment lorsqu’on travaille avec des
matrices de grande taille, s’avere souvent cotiteuse en termes de calcul. Dans le cas précédent, nous avons réussi
a minimiser 1’énergie en utilisant une discrétisation unidimensionnelle par différences finies avec des matrices
de taille 100, ce qui a permis de déterminer la densité électronique pour un seul électron. Cependant, ’étude
d’atomes plus complexes augmente considérablement la complexité computationnelle et le temps de calcul
devient prohibitif.

Dans cette partie on va passer de 'espace réel a ’espace de Fourier, ce qui est justifié par la périodicité
intrinseque des systémes cristallins que nous étudions. Un cristal parfait est décrit par une disposition spécifique
d’atomes dans une maille élémentaire qui se répete périodiquement, formant ainsi un réseau de Bravais R avec
son réseau réciproque R*. Cette périodicité nous permet d’utiliser une base de fonctions propres constituée des
modes de Fourier (ondes planes) associées aux vecteurs du réseau réciproque.

Dans ce contexte, nous utilisons la méthode de discrétisation par ondes planes, qui est une approximation
de Galerkin spécifique. Nous définissons un espace d’approximation de dimension finie X'g_,, comme :

1 }
a < Ecut

Xg,,, := Span {eg, GeR* 5

<
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Ve e R3, eg(x):= exp(iG - x)

1
VI
L’énergie de coupure E.,; détermine ainsi la taille de notre base d’orbitales : plus F¢yt est élevé, plus notre
solution approchée se rapproche de la solution exacte, mais le temps de calcul nécessaire augmente également.

Pour estimer l'erreur entre une solution calculée avec une énergie de coupure modérée E . et une solution
de référence obtenue avec une énergie de coupure élevée Fcyg rer, nous effectuons une décomposition en basses
et hautes fréquences.

XE

= Xp,,, ®Xp

cut,ref cut cut

ou Xg.,, = Span (eg, @ < Feut ) et Xé‘m = Span (eg,Ecut < @ < Ecut’ref) Cette décomposition
permet d’isoler l'effet des hautes fréquences, qui peuvent étre négligées pour une énergie de coupure suffisante,
sur la solution approchée.

Enfin, pour résoudre efficacement les équations de Kohn-Sham discrétisées et accélérer la convergence vers
la solution auto-cohérente du champ (SCF), nous utilisons l'outil DFTK (Density Functional Toolkit). Cet
outil permet de manipuler les orbitales électroniques et de calculer les densités en s’appuyant sur des fonctions
intrinseques, ainsi que sur des solveurs prédéfinis. DFTK est particulierement adapté aux calculs de structure
électronique des cristaux, exploitant la périodicité du systeme et permettant une manipulation efficace des
orbitales dans I’espace de Fourier. En combinant ces approches, nous pouvons estimer ’erreur introduite par une

énergie de coupure finie et optimiser le compromis entre précision et coiit computationnel dans nos simulations.

5.1 Estimation d’erreur

Dans cette section on s’intéresse aux estimations pratiques des erreurs de discrétisation pour les approxima-
tions numériques des calculs de structure électronique. Pour ce faire, nous utilisons une approche générale basée
sur une linéarisation des équations de Kohn-Sham. dans un contexte général. Supposons que nous souhaitons
trouver € R™ tel que f(x) = 0, pour une fonction non linéaire f : R™ — R™ (le résidu). Prés d’une solution z,
nous avons f(z) ~ f'(x) (x — z.), et par conséquent, si f’(x) est inversible, nous avons la relation erreur-résidu
suivante :

v -z~ f(2)7 (@) (12)

Il s’agit de la méme approximation qui conduit a l'algorithme de Newton. Supposons maintenant que nous
souhaitions calculer une quantité d’intérét réelle A (z.), ot A : R® — R est une fonction C! (par exemple,
Iénergie, une composante des forces interatomiques, ou la densité, etc.) ; nous avons alors I’égalité approximative
avec un coté droit calculable :

Alw) = A(z) = VA(x) - (f'(2) 7" f(2)) (13)
nous obtenons ’estimation simple suivante :
[A(z) = A(z)l < [VA@)] [ £ ()7, 1 ()] (14)
ou | - | est une norme choisie sur R”, et || - |op est la norme opérateur induit sur R™*™.

La structure de notre probléme ne peut pas étre facilement formulée comme ci-dessus en raison de la présence
de contraintes et de dégénérescences. D’apres la section 2-3 nous identifions ’analogue approprié du Jacobien
f'(z) : Vopérateur 2, + K, est le Jacobien de la carte résiduelle R : P — IIpH(P) qui correspond a notre
fonction f dans ce cas., qui s’annule pour P = P,. Notre approche repose donc sur I’approximation du premier
ordre suivante :

P—P, ~(Q,+K,) '"R(P) (15)

ou P est notre solution dans Xg,,, et P est la solution sur Xg_,, .-

Pour améliorer I’estimation des erreurs dans le contexte des méthodes numériques basées sur la séparation
des fréquences, nous commencgons par décomposer les vecteurs et opérateurs de ’espace tangent en deux parties
distinctes, associées respectivement aux composantes basse fréquence et haute fréquence. Nous étiquetons ces
parties comme ITg_ Tp M et HJEZMTPM A, notées respectivement par 1 et 2 pour simplifier. Ainsi, la relation
erreur-résidu peut étre écrite de manieére concise comme suit :

e

cut

L’inversion de l'opérateur (Q(P)+ K (P))|1, M dans tout I'espace est cofiteuse, car elle inclut des valeurs
non nulles sur les composantes associées aux différentes fréquences. Cependant, nous pouvons simplifier cette
tache en effectuant 'inversion uniquement sur la grille grossiere X'g_, et en approximant les composantes d’erreur
de basse fréquence. Nous appliquons les approximations suivantes :
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(Q-l-K)Ql ~0 et (Q+K)22 ~ Moy

L’opérateur M est défini sur le sous-espace orthogonal Hﬁm TpM s par la relation
M = PLT1/2PLT1/2PL7

ot Pt est I'opérateur de projection sur I'orthogonal de I'image de P et T est un opérateur coercif,diagonal en
Fourier.

En particulier, si T est choisi comme une discrétisation de 'opérateur 1 — A, on retrouve la norme de Sobolev
classique H'. M est positif défini, induisant ainsi une métrique sur cet espace. Cette formulation simplifie le
calcul de M'/? et permet d’effectuer efficacement des calculs impliquant M ~1/2 4 I’aide d’algorithmes itératifs.
Cela transforme le systéeme d’équations en :

(Q+K);1 (24 K)o P—-Pq | | R4
0 M2 P,—Po | | R

Nous pouvons alors résoudre pour P, — P, comme suit :
~ Ag—1
Py — Py~ M35 R
Puis, substituant ce résultat dans la premieére équation, nous obtenons :

P, —Pg= (Q + K);ll (Rl - (Q + K)12M2_21R2)

Ce calcul nécessite seulement un pas de Newton complet sur la grille grossiere X, rendant 1’approche
plus économique. En tenant compte de la correction apportée par (2 + K)i2, le résidu corrigé est donné par :

Q+K)j' (B — (24 K)1M3, R
Rschur (P) = ( Ju ( 1M£1R )12M 3, 2)
22 112

5.2 Choix des parametres

Le but est d’approcher la solution de référence P* et de calculer ’erreur P — P* sans avoir a calculer direc-
tement la solution de référence P*, qui nécessite un E,; tres grand et donc un temps de calcul important. Pour
cela, on introduit une base variable de taille supérieure a celle de la petite base (correspondant & g, Tp M
ou 1) et inférieure & la base de référence. En séparant les composantes de haute et basse fréquence et en utilisant
Papproximation du résidu Rgenur(P), on peut arriver a une approximation de l'erreur.

Variation de I'erreur d'énergie en fonction de y

Ecut=120
Ecut=150

Erreur d'énergie

FIGURE 14 — Variation de l'erreur d’énergie en fonction de ~

L’erreur diminue lorsque le parametre v augmente, avec « représentant le rapport entre I’énergie de coupure
de la petite base et celle de la base variable, soit Eé"“ . La courbe d’erreur diminue progressivement et se stabilise
a un certain facteur v. On observe la méme tendar;ce pour différentes valeurs de Ej,i; : plus on augmente Ejyis,
plus Derreur diminue, ce qui est conforme aux attentes. Une fois que la courbe d’erreur se stabilise, il devient
inutile d’augmenter davantage -y, car la courbe reste plate et 'erreur ne varie plus a partir de ce point.

Nous nous intéressons maintenant a identifier ce facteur v tout en minimisant le cott de calcul. Pour cela,
on calcule la norme ||[Mazes — (Q + K)ages]| en utilisant ey qui vaut M2_21R2. On remarque que cette norme
augmente en fonction de 7y et se stabilise a partir d’une certaine valeur de . Nous pouvons maintenant détecter
le point de stagnation en utilisant un algorithme de dichotomie avec une erreur relative d’environ ~ 1 x 1072
et le comparer a la stagnation de l'erreur précédemment obtenue avec le résidu Rschur-
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Variation de || M,,e, — (Q + K) 2e2H en fonction de y Variation de I'erreur d'énergie en fonction de y
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FI1GURE 15 — Comparaison entre la stagnation de I'erreur

On constate que les points de stagnation sont tres proches de celui obtenu avec le résidu Rgehur- Toutefois,
pour des F.,t initiaux tres élevés, il est nécessaire d’ajuster davantage 1’erreur relative dans notre fonction de
dichotomie pour se rapprocher du point de stagnation de la courbe d’erreur. Ainsi, on peut trouver le point de
stagnation 7 en inversant uniquement Mo sur les hautes fréquences, ce qui est moins cotiteux, et obtenir avec
ce vy une approximation de I’erreur.

Variation de I'erreurdes forces en fonction de gamme

Erreur de force

10 15 20 25 3.0
gamma

FIGURE 16 — variation de l’erreur des forces en fonction de

De maniére similaire, on peut calculer ’erreur entre les forces en utilisant le résidu Rgchyr €t en déterminant
les points de stagnation avec la méme norme. Il est nécessaire d’ajouter un léger déplacement au niveau des
atomes afin d’obtenir des forces non nulles. Ainsi, les points de stagnation calculés en utilisant la norme corres-
pondent bien a la stagnation de ’erreur des forces.

Nous avons pu effectuer des calculs similaires pour des systémes plus complexes, comme le TiOy et le GaAs,
dans un cluster de calcul en 3D, et nous avons obtenu des résultats similaires. La stagnation calculée avec la
méthode de dichotomie correspond a celle observée dans la stagnation de ’erreur.

Conclusion

Ce stage a approfondi la compréhension des méthodes numériques appliquées a la théorie de la fonctionnelle
de densité (DFT), avec un accent sur 'estimation des erreurs et I'optimisation des algorithmes. Nous avons
exploré diverses approches, comme la discrétisation par ondes planes et des méthodes de minimisation telles
que la descente de gradient et ’algorithme de point fixe (SCF). La combinaison de ces méthodes avec des
outils numériques avancés comme DFTK a permis d’améliorer l'efficacité tout en maintenant une précision
satisfaisante dans les simulations.

L’étude des algorithmes a montré 'efficacité de la relaxation appliquée aux algorithmes de point fixe et de
descente de gradient grace a I'introduction d’un parametre de relaxation variable, accélérant ainsi la convergence
et réduisant les itérations. L’utilisation d’algorithmes stochastiques, comme 'ajustement aléatoire du parametre
de relaxation, a montré des résultats prometteurs en termes de réduction du temps de calcul. La multiplication
par un parametre aléatoire n’ajoute pas de complexité au code mais accélére considérablement la convergence.

L’approximation de Galerkin, propre a la méthode des ondes planes, s’est révélée particulierement adaptée
a la simulation des systémes périodiques comme les cristaux. Les résultats ont montré que 'augmentation de
I’énergie de coupure E.,; améliore la précision, mais au prix d’un cotit computationnel accru. Nous avons proposé
une méthode d’estimation de 'erreur basée sur la décomposition en basses et hautes fréquences, permettant de
réduire le colit sans sacrifier la précision.

Enfin, 'estimation d’erreur via la méthode de Schur appliquée a la décomposition en fréquences a permis
d’obtenir une approximation fiable tout en minimisant le cotit des calculs. Cette approche pourrait étre étendue
a des systemes plus complexes et servir de base a des méthodes d’optimisation futures pour des simulations &
grande échelle.
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Annexes

1.Probléme de minimisation

Soit Hy un opérateur hermitien dont les valeurs propres €, sont associées aux vecteurs propres |¢,). Nous
souhaitons minimiser la trace Tr(HyP) pour un projecteur P de rang N.
Pour un projecteur P de rang N,j, nous pouvons écrire :

Te(HoP) = Tr (Ho SN [wih(wl) = S0 Tr(Holwi)(wl) = S01% (il Holus), oit [1) sont des vecteurs

orthonormaux formant une base de dimension N,j. Sachant que Hy a des vecteurs propres |¢,), nous pouvons
exprimer chaque [¢;) comme une combinaison linéaire de ces vecteurs propres :

|1/}1> = Z Cin|§0n>a
n
ol ¢ = (pn|thi). En utilisant cette décomposition, nous avons :
(il Holthi) = |ein|*en.
n
ou €, sont les N, plus petites valeurs propres de Hy. L’inégalité de Rayleigh stipule que pour un opérateur
hermitien H et un sous-espace de dimension N, la valeur minimale de la forme quadratique associée est atteinte

lorsque les vecteurs de base correspondent aux vecteurs propres associés aux plus petites valeurs propres de H.
Ainsi, nous avons :

2

el
Tr(HoP) > €n,
1

3
Il

Or
Ne) Ney

Te(HoP*) = 3 (pulHolgn) = 3 en.

n=1 n=1

Cela implique que :

TI'(H()P) 2 TI'(HQP*),

ce qui montre que le projecteur optimal P* minimise la trace Tr(HyP) parmi tous les projecteurs orthogonaux
de rang N.

2.Théorémes [1]

Théoréme.l. Sous des hypothéses appropriées, si Py € MN; est suffisamment proche de P*, I’Algorithme du
gradient descent avec un [ fire converge linéairement vers P* pour 8 > 0 suffisamment petit, avec un taux
asymptotique r(1 — BJgraq) 00 Jgraq = O + K*.

Théoréme.2. Sous des hypothéses appropriées et si le principe de forte Aubfau est satisfait, alors, pour 8 >
0 suffisamment petit et Py € MNg suffisamment proche de P*, I’Algorithme SCF avec un [ fize converge
linéairement vers P*, avec un taux asymptotique r(1 — BJscr) ot Jscp =1+ Q7 LK*.

3. Calcul du beta obtimal variable

3.1 Descente de gradient a pas variable 1
L’approximation de Py41 en fonction de Py et de B; peut étre exprimée comme :
P11 = Py — Billp (VE(Py)),
ou Ilp, (VE(Py)) est la projection du gradient de I’énergie VE(Py) sur le plan tangent passant par Pj.

On souhaite minimiser la fonction d’énergie suivante par rapport a 8, en utilisant P,f 1= Py

Ny
J(B) = Te(HoPEi) + 55 (Pl
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En substituant 'expression de Py, 1 dans cette fonction, on obtient :

Ny

£(8) = Tx (Ho (Px = BiTle (VE(P))) + 55 > (P = Bulle (VE(PL)ia)

=1
Pour le premier terme :
Tr(HoP?y ) = Tr(HoPZ) — 2B, Tr (HoPullp, (VE(Py))) + B; Tr (Ho(Ilp, (VE(P)))?) -

Pour le second terme :
Ny
% Z (Pr)ii = Bi(Tp, (VE(PL)))ii)” = 2% Z ((Pr)7: = 280(Pr)ii(Up, (VE(P)))i + Bi (Up (VE(P)))F) -

Ainsi, la fonction d’énergie devient :

Ny,
f(ﬂk) = Constante — 2Bk <T1" (H()Pkak (VE(Pk))) + % Z(Pk)lﬂ (Hpk (VE(Pk)))%Z)

Ny
+57 (Tr (Ho (1p (VE(P))?) + 5 35 2 (Wn (VE(P)); ) :
=1
Pour minimiser f(Sj), nous prenons la dérivée par rapport a 5 et la mettons & zéro :

df (Br)
dp,

Ny
= -2 (Tr (HoPllp, (VE(Pg))) + % > (P (HPk(VE(Pk)))¢,¢>

Ny
+28, <Tr (Ho (1p, (VEP))?) + 2> <Hp,€<VE<Pk>>>ii> =0,
=1
Ce qui nous donne :

Tr(HoPpllp, (VE(Py))) + 55 vaz"l(Pk)i,i(HPk(VE(Pk)))z‘,i.

o= Tr(Ho(Ip, (VE(P:)))?) + & Sty (p, (VE(P:)))2,

3.2 Descente de gradient a pas variable 3

La mise a jour de P est donnée par :
Pit1 = Py — Br®.

Le gradient d’énergie a l'itération k£ + 1 est donné par :

Ny
(0%
H(Piy1) = VE(Piyr) =% = =3 L, .

=1

o Ly = § - ;% rk,, Le résidu a litération suivante est défini par :

r* = Tp,, (H(Piy1)) = Up,,, (r - ZL,% .

k+1 nous voulons que :

<rk+1,rk> =0.

Pour minimiser l'interaction entre r* et r

En substituant cette forme dans la condition de minimisation, nous obtenons une équation de troisieme degré
en Gg.
ar i, + biBi + crBre + di = 0,

ou

— ap = —tr (rk’C( )) ou Ly =§ - Efvbl Ty €6 C(rg, L) = —=2rp Liry

— b =tr (’I“k/ (—B ( , Ly, Pk) + C( k ))), ou B(’I“]€7 Ly, Pk) = —rgLy — Lprg + 2P Lyry + 2rp L Py

— ¢ = tr (r¥ (—1p, (Lx) + B (r ,HO,Pk)))

— dy = tr (r¥1p, (HO))
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3.3 Point fixe

L’approximation de Py41 en fonction de Py et de By peut étre exprimée comme :

Pyi1 = R (P + Bellp, (2(Pr) — Pr)) ,
ou Ilp, (®(Py) — Py) est la projection du terme ®(Py) — Py sur le plan tangent passant par Pj.

. N . , . i 5 B
On souhaite minimiser la fonction d’énergie suivante par rapport &

F(Br) = Tr (Ho(Pr1)?) + 55 Z (Prs1)ii)
En substituant 'expression de Py dans cette fonction, on obtient :

f(Br) =Tr (HO (P + Bellp, ((Py) — Pk))z)
Ny

+ % (Py[i,i] + Billp, (B(Pr) — Py)li,d]).

i=1

Pour le premier terme :
Tr (Ho(Py+1)?) = Tr (Ho(Pr)?) + 28k Tr (HoPeIlp, (®(Py) — Pi))
+ B3 Tr (Ho (ILp, (®(Pr) — Pk))2> :

Pour le second terme :
« N o Ny
2% Y (Puli,i] + BiTle (B(Py) — Pu)li,))* = % > ((Prliyi))? + 284 Pili, il p, (®(Py) — Pe)[i, 4]
i=1 —
+67 (T, (B(Py) — Pk)[z',i]f) .

Ainsi, la fonction d’énergie devient :

Ny
F(Br) = Constante + 28, (Tr (Ho P Ilp, (®(Py) — Py)) + Bk% > Pefi, i|TLp, (®(Pr) — Py, ]
i=1

2
+ 6} (T (Ho (e, (@(P) — P))?) + B o5 Z T (D(Py) — P)liyd])?
Pour minimiser f(fx), nous prenons la dérivée par rapport a (i et la mettons & zéro :

df (Br)

T 2 (Tr (Ho P ITp, (®(Py) — Z Py[i, i) T1p, (®(Py) — Pi)[i, ]
Ny,
+ 26, (T (Ho (Ip, (8(P) — Py))*) + %Z (ILp, (®(Py) — P)[i,d))> = 0.
i=1
Ce qui nous donne :
T (Ho Ip, (®(Py) = Pi) Pi) + 55 Sy Peli, i) T, (D(Py) — Py) [, il

Br = - :
T (Ho (g, (@(P) = P)*) + %Z | (Ip, (2(P) = P) [ )

4. Calcul du beta obtimal fixe

Pour obtenir la convergence la plus rapide avec les méthodes de point fixe et gradient descent avec un beta
fixe, il faut que les valeurs propres de 1 — 3J soient aussi proches que possible de 0. La vitesse de convergence
dépend donc des valeurs propres de la matrice J et du parametre 3.

Soit A1 la plus petite et Ax la plus grande valeur propre de J. Nous cherchons & minimiser la distance
maximale entre 1 et ces valeurs propres multipliées par 3. Autrement dit, nous voulons minimiser :

max {|1 — S|, |1 — BAn]}.
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Le pas optimal (3, est celui qui minimise cette quantité. Pour le trouver, nous résolvons :
8. = argminmax {|1 - Ax| |1~ BAwl}

La solution est :

2
RS vE
En utilisant ce pas optimal, le taux de convergence r est donné par :
k=1
k41

ou Kk = )‘)\—le est le conditionnement spectral de J. Ce taux mesure la rapidité de la convergence : plus r est proche
de 0, plus la convergence est rapide. Si k est grand (les valeurs propres sont tres dispersées), r sera proche de
1, indiquant une convergence plus lente.

5. Autre méthodes

5.1 Descente de gradient a pas variable 3

Le parameétre 8 est calculé comme solution d’une équation de troisieme degré dans le cadre de la descente
1% q
de gradient pour minimiser I'interaction entre le résidu r* & I'itération k et le résidu r*+1 & I'itération suivante.
Cette minimisation se fait en cherchant & réduire (r*, r*+1). ot r5+1 est défini par I p, . (VE (Pyi1)).

5 ) p k+1 +

L’expression de Py, obtenue par la mise & jour
Pyy1 = R(Py — pllp, (VE (Py)))
conduit & une équation cubique en § de la forme :
apfy + bpfi + cBr + dy = 0.

Les coefficients a, b, ¢, et d dépendent du résidu, de la projection, ainsi que de la rétraction utilisée pour
rester sur la variété. Ils sont donnés par :

— ap = —tr (Tklc (rk,Lk)), ou Ly = % . Ef\ﬁl Tkys €L C(’I“k,Lk) = —2riLgry

— by =tr (’I“k/ (—B (Tk, Ly, Pk) +C (rk, Ho))), ou B(Tk, Ly, Pk) = —rgLi — Lprg + 2P Lyry + 21 L Py

— ¢ =tr (r (—1lp, (L) + B (r*, Hy, Pt)))

— di = tr (’I”k/Hpk (Ho))
Ces coefficients sont obtenus en linéarisant ’expression du résidu apres mise a jour, puis en rétractant cette
expression sur la variété (voir annexe). On utilise la bibliotheque Roots.jl sur Julia pour calculer les racines de
cette équation a chaque itération, et on prend la plus petite racine réelle. La multiplication de ce 8 par une loi
uniforme dans I'intervalle [0, 2], comme dans le cas des pas variables calculés précédemment, permet d’accélérer
la convergence .

—B=5e-5

—— B variable 1

—— B variable 1 avec loi uniforme
B variable 2

—— B variable 2 avec loi uniforme

—— B variable 3

—— B variable 3 avec loi uniforme

résidu

o 500 1000 1500 2000 2500
itération

FI1GURE 17 — Convergence de ’algorithme

5.2 Méthode de Barzilai-Borwein

La méthode de Barzilai-Borwein [2] est une méthode numérique utilisée pour résoudre des problémes d’op-
timisation non linéaires. On choisit un Sy variable de la forme :
[P — Poa?
(P — Pot) (L, VE(Py) — I, VE(Pi1))

Br =
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Cette méthode permet d’accélérer la convergence. Cependant, la courbe d’erreur ne décroit pas de maniere
uniforme ; elle oscille avant d’atteindre la convergence.

Me | Temps (s) | Iterations

be - 3.9107

beta variable 2.5517
oo 1 e ) OO Courbe de la densité avec gradient descent

barzilai-borwein 0.8735 2

Convergence de I'algorithme Gradient descent

beta=5e-5

beta variable
beta=5e-5 \ beta loi uniforme
beta variable \ beta Barzilai-Borwein

beta loi uniforme 12k
Barzilai-Borwein B

11 ¢

P(x)/dx

10 -

09

0 500 1000 1500 2000 2500 0.00 0.25 0.50 0.75 1.00
Nombre d'itérations X

((a)) Convergence des différentes descentes ((b)) Densité avec différentes descentes de gra-
de gradient dient

F1GURE 18 — Convergence des algorithmes

La méthode de Barzilai-Borwein converge plus rapidement que la méthode utilisant un g variable. Cependant,
lorsque le § variable est multiplié par un facteur issu d’une loi uniforme, la convergence de cette méthode
s’améliore considérablement et se rapproche de celle de la méthode de Barzilai-Borwein.

5.3 Point fixe avec double diagonalisation

Une autre méthode pour optimiser la convergence de la méthode SCF en ajustant la matrice de densité de
maniere sophistiquée. A chaque itération, le Hamiltonien est mis & jour selon :

Nb
Hy = Hy + (%) ZPk[iai]
i=1

ou h est le Hamiltonien de base et a est un parametre d’ajustement. La fonction @, qui projette sur les vecteurs
propres associés aux plus petites valeurs propres de la matrice, est utilisée pour obtenir les matrices Fj et Foy :

Fy = ©(Hy),
Hj = Ho+ 230 Fili, ]
Fy = ®(H)).

On définit la différence d; comme :
O = Fop, — 2F, + Py.

Le parametre de relaxation 3 est alors calculé pour optimiser la mise a jour :

r:[‘I‘((Sk(F‘]c — Pk)/)

N TR

ol ||0x||F représente la norme de Frobenius de dj. La mise & jour de la matrice densité est ensuite effectuée
comme :

Pyy1 = R(Py, + B llp, (®(Hy) — Pr))

Cette méthode ajuste le pas de mise & jour de maniere optimale pour converger plus rapidement vers une
solution auto-cohérente.
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6. Figures

Convergence de |'algorithme avec loi uniforme

beta avec loi uniforme
beta variable

1000

800

Nombre d'itérations
o
8

0 25 50 75 100
numéro d'essai

F1GURE 19 — Convergence du gradient descent avec beta qui suit la loi uniforme dans 100 essais
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FIGURE 20 — Variation du résidu pour g = ﬁ
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FIGURE 21 — Variation de I’écart en fonction de o pour I’équation de Gross-Pitaevskii
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FIGURE 22 — Variation de I’écart en fonction de o pour Az = b en utilisant la loi normale
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F1cURE 23 — Convergence avec la loi de probabilité construite
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FI1GURE 24 — Convergence avec la loi de probabilité construite
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Annexe CREGE

Le Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (LAMFA) est une unité mixte de
recherche affiliée au CNRS (UMR CNRS 7352) et & 'Université de Picardie Jules Verne. Il regroupe les mathéma-
ticiennes et mathématiciens de I’Université, jouant un role essentiel dans le développement des mathématiques,
en combinant recherche fondamentale et applications pratiques. Le LAMFA est structuré en trois équipes de
recherche :

— Analyse Appliquée (A43)

— Groupes, Algébre et Topologie (GAT)

— Systémes Dynamiques - Probabilités - Arithmétique (SymPA)

De plus, une équipe transverse a pour objectif de promouvoir I'image des mathématiques aupres du grand
public.

Structure du LAMFA

Le LAMFA est organisé de maniére a favoriser la collaboration et lefficacité au sein du laboratoire. Voici
un résumé de 'organigramme :
— Direction :
— Directeur
— Directeur adjoint
— Secrétariat :
— Secrétariat général
— Secrétariat CNRS
— Responsables d’équipes :
— Responsable de ’équipe Analyse Appliquée
— Responsable de I'équipe GAT
— Responsable de I’équipe SymPA
— Responsable de I'équipe Mathématiques et Grand Public
— Référents :
— Référent parité
— Référent développement durable
— Correspondant diffusion
— Correspondant communication
— Correspondant valorisation
— Correspondant international
— Conseil du laboratoire :
— Membres représentant les professeurs
— Membres représentant les maitres de conférences
— Membres du personnel administratif
— Représentant des doctorants

Environnement Interne

Au sein du LAMFA, la gestion de projet est un élément clé qui contribue & l'efficacité et a la réussite des
recherches menées. Le laboratoire est structuré en plusieurs équipes spécialisées, favorisant la collaboration et la
synergie entre les chercheurs. La communication interne est facilitée par des réunions régulieres, des séminaires
hebdomadaires et 'utilisation de plateformes collaboratives, ce qui permet un partage efficace des informations
et des ressources.

Chaque lundi matin, 1’équipe (A®) organise des séminaires ol des intervenants de différentes universités
présentent leurs travaux. J’ai assisté a 'un de ces séminaires, qui portait sur la mécanique quantique. Cette
présentation m’a fourni des informations précieuses et a élargi ma compréhension des applications mathéma-
tiques dans ce domaine. Ces événements sont une excellente occasion de découvrir de nouvelles perspectives et
de renforcer la cohésion interne.

La culture organisationnelle du LAMFA valorise I'innovation, la rigueur scientifique et la collaboration. Le
laboratoire collabore étroitement avec d’autres instituts de recherche, tant au niveau national qu’international,
ce qui favorise I’échange d’idées et la réalisation de projets interdisciplinaires. Ces collaborations enrichissent
les travaux menés au sein du laboratoire et ouvrent la voie a de nouvelles découvertes.

De plus, le LAMFA accorde une grande importance a la formation des doctorants et des stagiaires a la
recherche. Les jeunes chercheurs sont encadrés par des professeurs expérimentés, bénéficiant ainsi d’un environ-
nement propice au développement de leurs compétences. Le laboratoire est également impliqué dans 1’enseigne-
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ment des mathématiques a I'université, contribuant & la formation des étudiants en licence et en master. Les
membres du LAMFA participent activement a la préparation a l'agrégation de mathématiques, formant ainsi
les futurs professeurs et renforcant le lien entre recherche et enseignement.

Expérience Personnelle : Journée du LAMFA

J’ai eu 'opportunité d’assister a la Journée du LAMFA 2024, un événement important ou quatre chercheurs
du laboratoire ont présenté leurs sujets de recherche. Parmi eux se trouvait mon tuteur, ce qui m’a permis
de mieux comprendre mon sujet et les travaux auxquels il s’applique. Cette journée a été particulierement
enrichissante, offrant un apercu des différentes thématiques abordées au sein du laboratoire.

L’événement incluait également un petit-déjeuner et un déjeuner offerts par le laboratoire, favorisant les
échanges informels entre les participants. Ces moments de convivialité ont renforcé les liens au sein de la
communauté du LAMFA et ont permis d’engager des discussions constructives sur les projets en cours.

Missions du LAMFA

L’équipe Mathématiques et Grand Public est une équipe transverse du LAMFA. Son objectif est de promou-
voir I'image des mathématiques aupres du grand public, notamment des collégiens et des lycéens.

Formation des Etudiants en Licence et Master Le LAMFA s’investit non seulement dans la forma-
tion des étudiants en master, mais également dans celle des étudiants en licence apres le lycée. 11 offre
des cours et des séminaires spécialisés pour former les futurs enseignants et chercheurs. Le laboratoire
est impliqué dans la préparation a ’agrégation de mathématiques et assure un encadrement de qualité
pour les doctorants et post-doctorants, favorisant ainsi leur insertion dans la communauté scientifique.

Interventions dans les Etablissements Scolaires de Picardie Le LAMFA intervient activement dans
les établissements scolaires de la région Picardie a travers divers programmes éducatifs et ateliers de
sensibilisation aux mathématiques. Il organise des exposés dans les colleges et lycées, ainsi que des
stages MathC2+ axés sur des thématiques mathématiques comme ’atelier sur le triangle de Pascal en
2024. Le laboratoire participe également au Rallye Mathématiques Inter-classes, dont la finale se tient
a PUniversité de Picardie Jules Verne (UPJV). Par ailleurs, des ateliers Maths en Jeans sont animés
par des chercheurs du LAMFA dans plusieurs établissements, comme les colleges et lycées de Beauvais,
Chauny et Rue. Ces actions visent a promouvoir I’excellence en mathématiques et a encourager les éleves
a s’engager dans cette discipline.

Collaborations Interdisciplinaires Les membres du LAMFA interviennent dans diverses disciplines scien-
tifiques, pas seulement en mathématiques mais aussi en biologie et dans d’autres domaines. Le laboratoire
entretient des collaborations avec des partenaires industriels et des scientifiques d’autres disciplines, ce
qui permet d’appliquer les outils mathématiques a des problématiques concrétes en physique, ingénierie,
sciences de 'information, biologie, etc. Ces partenariats contribuent au développement de solutions inno-
vantes et enrichissent les travaux du LAMFA en ouvrant de nouvelles perspectives pour les applications
des mathématiques.

Stages pour Collégiens et Lycéens Un stage d’observation d’une semaine peut étre effectué au sein du
laboratoire par des éleves de 3°™¢ ou de 2°9°. Au programme : entretiens avec le personnel de 'université,
participation a des séminaires de recherche, des groupes de travail, des cours et activités de réflexion. Les
éleves intéressés sont invités a contacter le laboratoire pour organiser leur venue et remplir les formalités
administratives.

Vulgarisation des Mathématiques et Mise en Valeur des Mathématiciennes Le LAMFA est acti-
vement impliqué dans la promotion des mathématiques aupres du grand public. Il participe & des mani-
festations nationales comme la Féte de la Science, ou il tient un stand "Mathématiques', et au Salon des
Jeux Mathématiques & Paris, en tenant le stand de la SMAI De plus, le laboratoire présente des exposés
lors de la remise des prix des Olympiades de Mathématiques, contribuant ainsi a valoriser ’excellence
des éleves et a susciter I'intérét du public pour la discipline.

Dans le cadre de la mise en valeur des mathématiciennes, le LAMFA s’engage dans des actions visant
a promouvoir la place des femmes en mathématiques. De courtes présentations de mathématiciennes
sont diffusées au sein de I'université, mettant en lumiere leurs parcours et contributions. Le laboratoire
met également & disposition des établissements 1'exposition Portraits de mathématiciennes (voir http:
//womeninmath.net/), une exposition itinérante retragant le parcours scientifique et personnel de treize
mathématiciennes de divers pays d’Europe.


http://womeninmath.net/
http://womeninmath.net/
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