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1 Introduction
Ce rapport présente l’application de la méthode des différences finies en une dimension pour résoudre une

équation cinétique simplifiée de type BGK décrivant un gaz fictif. Nous introduisons le modèle mathématique,
sa discrétisation en vitesse, espace et temps, ainsi que le traitement des conditions aux limites.

2 Le Modèle
L’équation considérée est donnée sous une forme adimensionnée :

∂tf + v∂xf = 1
ετ

(M [ρ, u, T ] − f) , (1)

ou x et v sont des scalaires, et les quantités macroscopiques sont définies par :

ρ =
∫
R

f dv,

ρu =
∫
R

vf dv,

E =
∫
R

1
2 |v|2f dv.

La température et la pression sont définies comme :

E = 1
2ρ|u|2 + 1

2ρT,

p = ρT.

La distribution maxwellienne M [ρ, u, T ] est donnée par :

M [ρ, u, T ](v) = ρ√
2πT

exp
(

−|v − u|2

2T

)
. (2)

Le temps de relaxation est exprimé par τ = µ(T )
p .

Les conditions aux limites sont imposées sur un domaine borné [−1, 1] :

f(t, x = −1, v > 0) = fG, (3)
f(t, x = 1, v < 0) = fD. (4)

3 Transport sans collision
Dans cette section, nous étudions le cas particulier de l’équation cinétique où le terme de collision est absent

(ε → ∞). L’équation se réduit alors à une équation de transport classique :

∂tf + v∂xf = 0. (5)

La solution de cette équation est donnée par la propagation libre du signal dans l’espace des phases. Pour
discrétiser cette équation, nous utilisons un schéma numérique décentré, selon le sens de propagation de vj .

3.1 Discrétisation
En absence de collisions, le schéma numérique devient :

fn+1
i − fn

i

∆t
+ v+

j

fn
i − fn

i−1
∆x

+ v−
j

fn
i+1 − fn

i

∆x
= 0. (6)

Les flux sortants sont directement imposés par les conditions aux limites. Les flux entrants dépendent de la
distribution imposée fG ou fD.

3.2 Analyse
L’équation de transport sans collision est utile pour étudier le comportement d’une particule en l’absence

d’interaction avec son environnement. La méthode numérique doit respecter les contraintes de stabilité, comme
la condition de Courant-Friedrichs-Lewy (CFL).
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4 Transport avec collision
Lorsque le terme de collision est pris en compte (ε fini), l’équation devient :

∂tf + v∂xf = 1
ετ

(M [ρ, u, T ] − f). (7)

Dans ce cas, la dynamique est dominée par un équilibre entre le transport et la relaxation vers une distribution
maxwellienne.

4.1 Discrétisation
Le schéma numérique combiné pour ce cas est donné par :

fn+1
i − fn

i

∆t
+ v+

j

fn
i − fn

i−1
∆x

+ v−
j

fn
i+1 − fn

i

∆x
= 1

ετn
i

(M [ρn
i , un

i , T n
i ](vj) − fn

i ). (8)

4.2 Analyse
Dans ce régime, les collisions jouent un rôle crucial en forçant le système vers l’équilibre thermodynamique.

Le choix de ε influence directement la transition entre les régimes libre et collisionnel.

4.3 Grille de Vitesses
L’espace R des vitesses est borné dans un intervalle [vmin, vmax], subdivisé en nv + 1 points vj = j∆v, où

∆v = vmax−vmin
nv

. L’ensemble des points est appelé grille de vitesses.

4.4 Schéma Numérique
On utilise une schémas décentré upwind pour discrétiser l’équation :

fn+1
i − fn

i

∆t
+ v+

j

fn
i − fn

i−1
∆x

+ v−
j

fn
i+1 − fn

i

∆x
= 1

ετn
i

(M [ρn
i , un

i , T n
i ](vj) − fn

i ). (9)

Ce qui devient :

fn+1
i,j = fn

i,j + ∆tn(v+
j

fn
i,j − fn

i−1,j

∆x
+ v−

j

fn
i+1,j − fn

i,j

∆x
) + ∆tn

ϵτn
i

(
M [ρn

i , un
i , T n

i ](vj) − fn
i,j

)
, (10)

avec v+
j = max(vj , 0) et v−

j = min(vj , 0).
pour i = 1 à nx − 1, où les quantités macroscopiques sont définies par

ρn
i =

nv∑
j=0

fn
i,j∆v, ρn

i un
i =

nv∑
j=0

vjfn
i,j∆v, En

i =
nv∑

j=0

1
2 |vj |2fn

i,j∆v,

et où la température et la pression sont définies par

En
i = 1

2ρn
i |un

i |2 + 1
2ρn

i T n
i , pn

i = ρn
i T n

i ,

On a montré dans le cours de la dernière séance que la formule de trapèze peut étre réduit à la formule de
réctangle à cause des valeurs de fi, 0 et fi, nv

Le temps de relaxation vaut τn
i = µ(T n

i )
pn

i
= 1

ρn
i

.

4.5 Prise en compte des conditions aux limites
Le schéma précédent est décentré ce qui nécessite la connaissance de fn

i,j aux noeuds de bords i = 0 et
i = nx, On pose alores les conditions au limites suivantes

fn
0,j = fG(vj), pour j tel que vj > 0.

Si cette distribution est donnée par une loi de réflexion, on procède de la même façon. Par exemple, pour
une réflexion spéculaire, on posera

fn
0,j = fn

0,nv−j , pour j = nv

2 à nv

dans le cas où la grille de vitesse est symétrique par rapport à 0, avec un nombre de points impair.
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4.6 Positivité du schéma
Le schéma préserve la positivité de la solution sous une condition CFL. En effet, le schéma est défini par :

fn+1
i,j = fn

i,j − ∆tn

(
v+

j fn
i,j − fn

i−1,j

∆x
+

v−
j fn

i+1,j − fn
i,j

∆x

)
+ ∆tn

1
ϵτn

i

(
M [ρn

i , un
i , T n

i ](vj) − fn
i,j

)
,

ce qui devient :

fn+1
i,j =

(
1 − ∆tn

|vj |
∆x

− ∆tn
1

ϵτn
i

)
fn

i,j − ∆tn

v−
j

∆x
fn

i+1,j + ∆tn

v+
j

∆x
fn

i−1,j + ∆tn
1

ϵτn
i

M [ρn
i , un

i , T n
i ](vj),

Ainsi, fn+1
i,j est une combinaison linéaire de fn

i,j , fn
i+1,j , fn

i−1,j et M [ρn
i , un

i , T n
i ](vj). Tous les coefficients sont

positifs, à l’exception du premier, qui impose que le pas de temps soit suffisamment petit. Par conséquent, la
positivité de ce coefficient implique la condition suivante :

∆tn ≤
(

|vj |
∆x

+ 1
ϵτn

i

)−1
,

Cette condition doit être valable pour tout i et pour tout j, d’où la condition CFL suivante :

∆tn ≤
(

1
∆ttransp

+ 1
∆tcoll

)−1

où ∆ttransp = ∆x
maxj |vj | et ∆tcoll = mini ϵτn

i .
Sans collision, la condition CFL devient :

∆tn ≤ ∆ttransp

Le pas de temps ∆t est constant, ce qui permet de le sortir de la boucle. En revanche, dans le schéma avec
collision, ∆t n’est plus constant et dépend du nombre de Knudsen.

5 Structure du Code
Le programme principal bgk.f90 contient des sous-routines et des fonctions afin de structurer efficacement

le code. Celui-ci est également parallélisé avec OpenMP en utilisant 4 processeurs pour réduire le temps de
calcul. Pour compiler le code, il faut utiliser la commande suivante :

gfortran -O3 -fopenmp -o bgk bgk.f90

Après compilation, l’exécution du code avec ./bgk dans le terminal affiche le temps de calcul et le nombre
d’itérations pour différentes valeurs de ϵ.

Le code est structuré de la manière suivante :
— Programme principal :

— bgk : Le programme principal où sont définies les variables, les conditions aux limites, et qui appelle
plusieurs sous-routines pour la simulation du modèle BGK.

— Sous-routines :
— init_velocity : Initialise les vitesses des particules (v) sur une plage définie par vmin et vmax.
— init_fn : Initialise la fonction de distribution (fn) avec des valeurs basées sur la distribution de

Maxwell pour les gaz à gauche et à droite.
— Maxwellienne : Calcule la distribution de Maxwell pour une vitesse donnée à partir de la densité,

de la vitesse et de la température.
— macro : Calcule les grandeurs macroscopiques telles que la densité (ρ), la quantité de mouvement

(rhou), la température (T ), et l’énergie (E) à partir de la fonction de distribution fn.
— sans_collision : Réalise une simulation sans collision, où la fonction de distribution est transportée

sans l’effet de collision. Cette sous-routine utilise OpenMP pour la parallélisation des boucles et met
à jour les grandeurs macroscopiques.

— avec_collision : Réalise une simulation avec collision, où une relaxation est appliquée aux particules
selon une règle basée sur ϵ. Le transport et la collision sont effectués dans une boucle itérative, et la
mise à jour de la fonction de distribution (fnpun) est calculée en fonction de la densité locale et de ϵ.
Cette sous-routine est également parallélisée avec OpenMP.
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— write_file_with_epsilon La sous-routine write_file_with_epsilon permet d’écrire les données dans
un fichier dont le nom contient la valeur de ϵ. Elle prend en entrée le nom de base du fichier, la valeur
de ϵ, le numéro d’unité pour l’ouverture du fichier, ainsi que les données à écrire et les paramètres de
discrétisation.

Fonctions et sous-routines OpenMP :
— Les directives OpenMP ($ !OMP) sont utilisées dans plusieurs sous-routines pour la parallélisation des

boucles, telles que :
— !OMP PARALLEL DO PRIVATE(i, j) : indique qu’une boucle sera exécutée en parallèle, chaque ité-

ration étant effectuée indépendamment.
— !OMP END PARALLEL DO : marque la fin de la section parallèle.

6 Résultats numériques :

Comparaison	des	courbes	:	Densité,	Vitesse	et	Température
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Figure 1 – Comparaison entre différentes valeurs macroscopiques pour les schémas sans collisions et avec
collisions avec deux valeurs d’epsilon différentes et la solution exacte pour nv=300 et nx=1500.
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Figure 2 – Comparaison entre différentes valeurs macroscopiques pour les schémas sans collisions et avec
collisions avec deux valeurs d’epsilon différentes et la solution exacte pour nv=50 et nx=2000.

Figure 3 – Comparaison entre différentes valeurs macroscopiques pour les schémas sans collisions et avec
collisions avec deux valeurs d’epsilon différentes et la solution exacte pour nv=500 et nx=5000.
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Figure 4 – Comparaison entre différentes valeurs macroscopiques pour les schémas sans collisions et avec
collisions avec deux valeurs d’epsilon différentes et la solution exacte pour nv=500 et nx=5000.
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Figure 5 – Comparaison avec un une grille un Vmin et Vmax petite

6.1 Analyse des résultats
Les différentes images montrent la comparaison entre la solution exacte et la solution approchée, avec et sans

terme de collision, en utilisant deux valeurs d’epsilon. La première valeur d’epsilon est ϵ = 5×10−5, utilisée pour
comparer avec la méthode d’Euler, et la seconde valeur est ϵ = 105, utilisée pour comparer avec le transport
sans collision, tout en prenant également en compte la solution exacte.

On remarque que le code fonctionne bien dans les deux schémas, et que les solutions approchées s’approchent
de plus en plus de la solution exacte. Cependant, il est important de noter que les résultats sont sensibles à la
taille de la grille, en particulier les paramètres nx (taille de la grille en x) et nv (taille de la grille en vitesse v).

Pour un premier test de calcul, nous avons utilisé les valeurs vmin et vmax définies respectivement comme
4
√

Tg et 4
√

Td. Cependant, cette grille n’a pas fonctionné correctement pour un nombre de Knudsen très petit
(Voir Figure 5). En effet, pour un nombre de Knudsen très grand, le terme de collision devient extrêmement
petit et peut être négligé, ce qui nous ramène au schéma BGK du transport sans collision. En revanche, lorsque
le nombre de Knudsen est très petit, le terme de collision devient significatif et il est essentiel de bien choisir la
taille de la grille, c’est-à-dire vmin, vmax et nv, pour obtenir une approximation précise de la solution.

Pour se rapprocher davantage de la solution d’Euler, nous avons choisi un facteur de 14 pour vmin et vmax au
lieu de 4, afin de mieux ajuster la grille. Dans les images précédentes, nous pouvons aussi observer l’influence de
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la discrétisation de la grille en nx et nv. En effet, pour un nv relativement petit par rapport à nx, comme dans
la figure 2, on remarque que la courbe pour le cas du transport n’est pas lisse, mais présente des discontinuités
dues à une combinaison de chocs et de détente. En revanche, lorsqu’on augmente nv, comme dans la figure
1 pour nv = 300, on observe que la fonction devient plus lisse. Cependant, un petit choc apparaît encore au
niveau de x = 0 pour la densité et la vitesse.

Plus on raffine le maillage, comme dans la figure 3, plus la fonction devient lisse, ce qui témoigne de la
meilleure approximation de la solution exacte. Cela confirme l’importance d’un maillage suffisamment fin pour
obtenir des résultats précis dans le cas des équations de transport avec ou sans collision. Voir l’annexe pour plus
d’images

6.2 Temps de calcul

Figure 6 – Variation du temps de calcul pour différentes epsilon
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Figure 7 – Variation du nombre d’itérations en fonction de ϵ.
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Figure 9 – Comparaison pour différentes ϵ

On remarque que, plus le nombre de Knudsen est petit, plus le nombre d’itérations et le temps de calcul
augmentent, ce qui est bien cohérent on remarque aussi que le profil des deux variations est presque identique.
En effet, notre condition CFL dépend du nombre de Knudsen, donc plus le nombre de Knudsen tend vers 0,
plus le temps de calcul augmente. Par exemple, pour un nombre de Knudsen égal à 10−6, le temps de calcul
atteint 2681.43 secondes. Cela est valable pour un nombre n = 500 et un nombre nv = 100. Ainsi, plus on
affine la grille en vitesse et en X, plus le temps de calcul augmente, à cause de la condition CFL qui préserve
la positivité du schéma, dans les différentes simulation on a utilisé un cfl qui vaut 0.4 .

6.3 Schéma implicite
Pour résoudre le problème lié au temps de calcul, on peut utiliser un schéma implicite. En effet, ce schéma

n’impose pas une condition CFL qui dépend du nombre de Knudsen. La méthode implicite consiste à inverser
pour calculer f à l’itération n + 1. Par contre, on rencontre un problème dans le deuxième terme de la collision
dans la fonction de Maxwell. On peut résoudre ce problème en calculant les quantités macroscopiques à chaque
itération pour le terme sans transport et en utilisant ces conditions macroscopiques de densité et de température
pour calculer la fonction avec le terme de collision.

fn+1
i,j = fn

i,j + ∆tn

(
v+

j

fn
i,j − fn

i−1,j

∆x
+ v−

j

fn
i+1,j − fn

i,j

∆x

)
+ ∆tn

ϵτn
i

(
M [ρn+1

i , un+1
i , T n+1

i ](vj) − fn+1
i,j

)
, (11)

Donc, dans le code, on pose à chaque itération :

wn = fn
i,j + ∆tn

(
v+

j

fn
i,j − fn

i−1,j

∆x
+ v−

j

fn
i+1,j − fn

i,j

∆x

)
(12)

Puis, on applique la sous-routine macro sur wn pour calculer les paramètres macroscopiques. Ensuite, on les
utilise pour calculer fn+1 :

fn+1
i,j = wn + ∆tn

ϵτn
i

(
M [ρn+1

i , un+1
i , T n+1

i ](vj) − fn+1
i,j

)
. (13)

Le schéma implicite nécessite une condition CFL similaire à celle du transport, ce qui permet d’utiliser un pas
de temps fixe. Cependant, le temps de calcul est supérieur à celui du schéma sans terme de collision, car ce
schéma implique une application supplémentaire de la sous-routine macro à chaque itération.

L’intérêt principal de cette méthode réside dans le fait que, pour un ϵ très petit, tendant vers zéro, le temps
de calcul reste quasiment constant. En effet, le pas de temps est fixe et ne dépend pas de la valeur de ϵ.

7 Conclusion
La méthode des différences finies s’est avérée efficace pour résoudre l’équation cinétique simplifiée en 1D,

en modélisant aussi bien les régimes de transport avec collision que sans collision. La discrétisation en espace,
temps et vitesse, couplée à une gestion rigoureuse des conditions aux limites, a permis d’obtenir des solutions
précises et cohérentes avec les attentes théoriques.
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Conclusion Taha Bamhaoute

Les simulations ont mis en évidence l’importance des paramètres de discrétisation, notamment la taille de
la grille et le pas de temps, pour garantir une bonne précision et une convergence vers la solution exacte. En
particulier, la sensibilité au nombre de Knudsen a souligné les limites des schémas explicites, surtout lorsque ϵ
est très petit, rendant nécessaire l’utilisation d’un schéma implicite pour réduire le temps de calcul.

Le passage à un schéma implicite a permis de surmonter ces limitations, en offrant une approche plus stable
et indépendante des contraintes de la condition CFL liée à ϵ. Bien que ce schéma augmente le coût par itération
en raison du recalcul des grandeurs macroscopiques, il garantit des performances nettement améliorées pour des
ϵ très petits.

En conclusion, cette étude met en lumière l’équilibre nécessaire entre précision numérique et coût de calcul
dans la simulation de phénomènes cinétiques complexes. Elle ouvre la voie à des travaux futurs visant à optimiser
davantage les algorithmes, notamment par l’utilisation de techniques avancées comme la méthode multigrille ou
des solveurs parallélisés pour les systèmes linéaires issus des schémas implicites.
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